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Abstract—Hyperspectral image (HSI) super-resolution is to
improve the spatial resolution while preserving spectral fidelity.
Existing CNN- and Transformer-based methods face challenges
in simultaneously capturing multi-scale local and global features
and maintaining spectral accuracy. To address these issues, in this
paper, the Hierarchical Self-Calibration Transformer (HSCT) is
proposed for HSI super-resolution, combining the merits of CNNs
and Transformers in a multi-stage framework. Specifically, CNNs
are utilized for local feature extraction, leveraging inductive
biases to enrich feature representations, while Transformers focus
on global feature extraction to model complex and global depen-
dencies. A variable Window-based Self-Attention with window
shifting is designed to extract multi-scale spatial features, while a
Channel Self-Attention refines spectral features to ensure fidelity,
parallel integration of which enables efficient spatial-spectral
feature learning. Additionally, Self-Calibration Convolution and
Residual Connections are integrated to improve feature represen-
tations and model stability. Extensive experiments demonstrate
the outperformance of the proposed HSCT over representative
traditional and state-of-the-art deep learning-based methods,
both visually and quantitatively.

Index Terms—Transformer, super-resolution, hyperspectral
image, deep learning.

I. INTRODUCTION

Hyperspectral images (HSIs) provide rich spectral infor-
mation across hundreds of continuous bands, crucial for en-
vironmental monitoring, precision agriculture, and military
reconnaissance [1]. However, imaging limitations often lead
to low spatial resolution, restricting practical applications.
Super-resolution techniques are effective in enhancing image
resolution, with single hyperspectral image super-resolution
methods gaining significant attention for their practicality and
convenience, as no auxiliary images are required.

Early methods like interpolation relied on manually ex-
tracted features and struggled to restore HSI details. Following
the success of deep learning in greyscale and RGB im-
age super-resolution, deep learning-based hyperspectral image
super-resolution has rapidly developed. 3D CNNs, such as
the full 3D CNN [2] and the mixed 2D/3D CNN [3], which
process both spatial and spectral dimensions, have gained
popularity. However, these methods suffer from high compu-
tational complexity. To address this, GDRRN [4] and SSPSR
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[5] leverage spectral grouping and spatial-spectral attention to
reduce model complexity. Despite this, pure CNNs may ignore
long-range dependencies and global semantics. Transformers,
such as SwinIR [6], have demonstrated success in natural
image super-resolution but are still in the early stages for HSIs.
Notable works, such as Interactformer [7] and MSDformer [8],
incorporate Transformer-based architectures, while the high
computational complexity remains challenges for efficient HSI
super-resolution.

To address the limitations in capturing fine-grained features,
a novel HSI super-resolution method is proposed in this paper.
It utilizes a hierarchical Transformer framework with variable
windows combining local window self-attention and inter-
window interactions, striking a balance between computa-
tional efficiency and global context preservation. Designed
in a multi-stage structure, it employs spectral feature ex-
traction module to ensure fidelity, self-calibrated convolution
to enhance sensitivity and translation equivariance, and skip
connections to stabilize training. Extensive experiments are
deployed to demonstrate its effectiveness in improving recon-
struction performance while preserving spectral information.

II. METHODOLOGY

A. Network structure

In HSI super-resolution, shallow and deep features provide
complementary and distinct information, both of which are
crucial for reconstructing high-resolution HSIs. The proposed
Hierarchical Self-Calibration Transformer (HSCT) for hy-
perspectral image super-resolution, illustrated in Fig. 1, is
composed of the Shallow Feature Extraction (SFE), Deep Fea-
ture Extraction (DFE), and High-resolution Image Reconstruc-
tion (HIR) modules. The input low-resolution hyperspectral
image is denoted as ILR ∈ Rh×w×C , where h and w represent
the height and width of the image, respectively, and C denotes
the number of spectral bands. The super-resolution process can
be formulated as:

ISR = HHSCT(ILR) (1)

where HHSCT denotes the function of the proposed HSCT,
ISR ∈ Rrh×rw×C represents the reconstructed high-resolution
HSI, and r is the super-resolution scale factor.

Shallow Feature Extraction: Hyperspectral images typ-
ically exhibit considerable spectral redundancy. To extract
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Fig. 1. Structrue of the proposed HSCT network.

shallow features from the low-resolution image ILR, a simple
3 × 3 convolutional layer is employed. This layer captures
early visual features and simultaneously reduces the channel
dimension by leveraging spectral correlations:

FS = HConv(ILR) (2)

where HConv represents the convolutional layer, FS ∈
Rh×w×D denotes the shallow feature map and D is the
embedding dimension. The extracted shallow features serve
as basis for subsequent Transformer-based feature extraction.

Deep Feature Extraction: To effectively capture the deep
features of low-resolution hyperspectral images, an advanced
architecture is employed in the proposed HSCT. The archi-
tecture comprises stacked Hierarchical Self-Calibration Trans-
former Blocks (HSCTBs) and a 3 × 3 convolutional layer.
Each HSCTB is designed as a multi-layer composite structure,
integrating two core components: the Hybrid Self-Attention
Transformer Layer (HSATL) and Self-Calibration Convolution
(SCConv). By synergizing self-attention with self-calibration
convolution, HSCTBs enable efficient and reliable feature
extraction in HSIs.

Each HSCTB comprises six HSATLs, specifically designed
to deeply explore and capture the intricate global and local
spatial-spectral dependencies inherent in HSIs.

The HSATL employs a hybrid self-attention (SA) structure,
enclosing two parallel SA structures for diverse feature pro-
cessing. One is Window-based Self-Attention (WSA), which
focuses on the spatial dimension by dividing the image into
non-overlapping windows and computing SA within each
window to capture local spatial features. Through window
interactions, WSA also facilitates the capture of global fea-
tures. Typically implemented as multi-head form, denoted as
WMSA, it enables effective feature extraction across multiple
dimensions. The other is Channel Self-Attention (CSA), which
focuses on the spectral dimension. By applying SA across

spectral channels, CSA identifies and enhances the interactions
and correlations between different spectral bands. To ensure
coherent visual representation and mitigate optimization con-
flicts, the output of the channel attention is scaled by a weight
α [9].
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Fig. 2. Two cascaded HSATLs with the same window size.

The six HSATLs in HSCTB are arranged into three groups,
each containing two HSATLs, forming a ‘Window and Shifted
Window’ structure, as illustrated in Fig. 2. Window-based
self-attention confines global attention computation to an
M × M local window, alleviating quadratic computational
complexity. Interactions and connections between windows
are facilitated by alternating between regular and shifted
windows. Unlike previous Swin Transformer-based methods
with fixed windows, the window sizes are set to be 2, 4, and
8 for the three groups of HSATLs, respectively, enabling a
progressive expansion of the receptive field and allowing the
model to leverage both local information and global context
simultaneously. The fine details and overall structural features



of the image can thus be effectively captured.
The final HSCTB layer includes a self-calibrated convolu-

tion and a residual connection. The former enhances transla-
tional equivariance and feature extraction with larger receptive
fields and multi-scale encoding, while the latter aggregates
multi-level features for better performance.

The convolutional layers at the final stage of deep fea-
ture extraction can effectively enhance the extracted features,
strengthening the fusion of shallow and deep features. The
deep feature extraction process is expressed as:

FDk
= HHSCTBk

(FDk−1
), k = 1, 2, ...,K

FD = HConv(FDK
)

(3)

where HHSCTBk
denotes the kth HSCTB and HConv is the last

convolutional layer. The input of the first HSCTB is FS , that
is, FD0

= FS .
High-resolution Image Reconstruction: Prior to recon-

struction, shallow features from long skip connections are
integrated with deep features to leverage multi-frequency
information and stabilize training. These fused features are
used to form the high-resolution hyperspectral image ISR
through the high-resolution image reconstruction operation
HHIR composed of convolution and Pixel Shuffle:

ISR = HHIR(FS + FD) (4)

B. Loss function
To guide the model in learning complex hyperspectral char-

acteristics and generating both visually realistic and spectrally
accurate high-resolution outputs, a loss function containing
three key components is specifically designed:

L = L1 + λ1LSAM + λ2LGra (5)

where the weights λ1 and λ2 allow flexible adjustment of each
component’s contribution. The L1 loss L1 ensures sparsity
and mitigates over-smoothing by addressing pixel-level dif-
ferences:

L1 =
1

N

N∑
n=1

∥InSR − InHR∥1 (6)

where InSR and InHR represent the n-th reconstructed super-
resolution HSI and the corresponding high-resolution ground
truth, respectively, and N represents the number of images
in a training batch. The Spectral Angle Mapper (SAM) loss,
denoted as LSAM, preserves spectral fidelity by constraining
the angles between spectral vectors:

LSAM =
1

N

N∑
n=1

1

π
arccos

(
InHR · InSR

∥InHR∥2 · ∥InSR∥2

)
(7)

Lastly, the gradient loss LGra, preserving structural details and
sharpness by focusing on edge information, is formulated as:

LGra =
1

N

N∑
n=1

∥M(InHR)−M(InSR)∥1 (8)

where M(I) = ∥(∇hI,∇wI,∇cI)∥2 denotes the gradient
map, combining the gradients of the HSI I in the spatial (height
∇h, width ∇w) and spectral (∇c) domains.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

To comprehensively evaluate the super-resolution perfor-
mance of the proposed HSCT, experiments are conducted
on the Chikusei and Houston datasets. The Chikusei dataset
has an area of 2517 × 2335 pixels with 128 spectral bands,
while the Houston dataset has an area of 4172× 1202 pixels
with 48 bands. For testing, four non-overlapping patches are
cropped: 512× 512 pixels for Chikusei and 256× 256 pixels
for Houston. The remaining sections are used for overlapping
training patches, with 10% randomly selected for validation.
The patch and overlap sizes (in pixels) for different super-
resolution scales (×2 and ×4) are summarized in Table I.

TABLE I
DATASET PARTITION AND PATCH SPECIFICATIONS

Dataset
Testing Training

Patch Size Patch Size (Overlap Size)
×2 ×4

Chikusei 512× 512
32× 32 (16) 64× 64 (32)Houston 256× 256

To evaluate the super-resolution performance of the pro-
posed HSCT, it is compared with several representative meth-
ods, including the traditional baseline Bicubic interpolation
method, the group-based method SSPSR [5] modeling spatial-
spectral priors through spectral grouping, the 3D CNN-based
method MCNet [3] which captures spatial and spectral cor-
relations using 3D convolutions, and the Transformer-based
method MSDformer [8] using a deformable design. To en-
sure a comprehensive evaluation, besides visual comparison,
peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM), spectral angle mapping (SAM), and relative global
synthesis error (ERGAS) are utilized as objective evaluation
metrics for quantitative evaluation.

B. Results and Analysis

The experimental results for different methods on the two
datasets are presented in Tables II and III, with visual compar-
isons shown in Figs. 3 and 5, which clearly demonstrate the
outperformance of the proposed HSCT over the compared in
both visual quality and objective evaluation metrics. Visually,
HSCT generates sharper details, clearer textures, and more
accurate reconstructions with fewer artifacts, as confirmed by
the error maps. Quantitatively, HSCT achieves the highest
PSNR and SSIM, and the lowest SAM and ERGAS across
both datasets, indicating superior image quality and spectral
fidelity. Additionally, the spectral curves in Fig. 4 show that
HSCT preserves spectral information more effectively, with
minimal deviations from the ground truth curves compared
to other methods, further highlighting its superior spectral
fidelity. In summary, HSCT demonstrates clear advantages
in both spatial details and spectral accuracy over compared
methods.



TABLE II
EVALUATION METRICS ON CHIKUSEI DATASET

Method Scale PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓
Bicubic

×2

43.5762 0.9744 1.7690 3.4524
SSPSR 47.6039 0.9898 1.1477 2.2617
MCNet 47.0257 0.9880 1.3257 2.3602

MSDformer 47.3885 0.9892 1.2276 2.3286
HSCT 47.9978 0.9907 1.1112 2.1917

Bicubic

×4

37.7709 0.8979 3.4026 6.6529
SSPSR 39.9999 0.9402 2.3435 5.1071
MCNet 39.6664 0.9334 2.7942 5.3104

MSDformer 39.6714 0.9357 2.5329 5.2997
HSCT 40.0762 0.9415 2.3637 5.0902

(a) (b) (c) (d) (e) (f)

Fig. 3. Reconstructed super-resolution results on Chikusei dataset with scale
factor 2, where the first row shows the pseudo-color images, and the second
row presents the error maps. (a) Ground truth, (b) Bicubic, (c) SSPSR, (d)
MCNet, (e) MSDformer, and (f) HSCT.

(a) (b)

Fig. 4. Spectral curves of the sampling points in the super-resolution results
generated with different methods. (a) Chikusei dataset and (b) Houston dataset.

IV. CONCLUSION

In this paper, the Hierarchical Self-Calibration Transformer
(HSCT) is proposed for hyperspectral image super-resolution,
combining the excellent ability of CNNs and Transformers for
feature extraction. By leveraging a variable window-based self-
attention mechanism with window shifting, and incorporating
Channel Self-Attention for spectral refinement, HSCT is capa-
ble of efficiently capturing multi-scale spatial-spectral features.
The Self-Calibration Convolution and Residual Connections
enhances feature representations and model stability. Extensive
experiments demonstrate that HSCT outperforms both tradi-
tional and some state-of-the-art deep learning-based methods,
by achieving superior visual quality and better quantitative
evaluation metrics.

TABLE III
EVALUATION METRICS ON HOUSTON DATASET

Method Scale PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓
Bicubic

×2

49.9806 0.9928 1.2007 1.2516
SSPSR 52.8735 0.9964 0.9153 0.8886
MCNet 53.0596 0.9965 0.9305 0.8725

MSDformer 52.9889 0.9964 0.9290 0.8742
HSCT 53.3033 0.9966 0.8721 0.8447

Bicubic

×4

43.3312 0.9651 2.4244 2.7118
SSPSR 46.2726 0.9818 1.6740 1.9193
MCNet 46.3730 0.9820 1.9395 1.9046

MSDformer 46.8234 0.9837 1.7130 1.7902
HSCT 46.9966 0.9844 1.6115 1.7548

(a) (b) (c) (d) (e) (f)

Fig. 5. Reconstructed super-resolution results on Houston dataset with scale
factor 4, where the first row shows the pseudo-color images, and the second
row presents the error maps. (a) Ground truth, (b) Bicubic, (c) SSPSR, (d)
MCNet, (e) MSDformer, and (f) HSCT.
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